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The linear stability of granular material in an unbounded uniform shear flow is 
considered. Linearized equations of motion derived from kinetic theories are used to 
arrive at a linear initial-value problem for the perturbation quantities. Two cases are 
investigated : (a) wavelike disturbances with time constant wavenumber vector, and 
(b) disturbances that will change their wave structure in time owing to a shear-induced 
tilting of the wavenumber vector. In both cases, the stability analysis is based on the 
solution operator whose norm represents the maximum possible amplification of initial 
perturbations. Significant transient growth is observed which has its origin in the non- 
normality of the involved linear operator. For case (a), regions of asymptotic 
instability are found in the two-dimensional wavenumber plane, whereas case (b) is 
found to be asymptotically stable for all physically meaningful parameter com- 
binations. Transient linear stability phenomena may provide a viable and fast 
mechanism to trigger finite-amplitude effects, and therefore constitute an important 
part of pattern formation in rapid particulate flows. 

1. Introduction 
Rapid flows of granular materials arise in numerous applications in science and 

engineering. In materials processing, ceramic powders are chemically precipitated out 
of gas phase reactions in turbulent flows, in power generation circulating fluidized bed 
combustors are used to burn coal, in chemical processing pneumatic transport is widely 
used in a variety of situations, and in the environment, sediment is transported along 
river beds or on the ocean floor, and debris, soil and rocks flow down steep hill sides 
leaving trails of destruction. 

Despite a great deal of effort directed towards modelling the constitutive equations 
beyond the ground breaking work of Bagnold (1954) (Jenkins & Savage 1983; Savage 
1992), and simulating particulate systems with direct numerical approaches by 
computing all interactions separately (e.g. Walton, Kim & Rosato 1991 ; see review by 
Campbell 1990), our understanding of inertially dominated granular flow phenomena 
still lacks a satisfactory theoretical background. The principal deficiency lies in the fact 
that most of the above examples are affected by fluid-particle interactions in a 
turbulent flow field with a solids loading that cannot be assumed to be small, and as 
a consequence we have difficulty predicting the highly non-uniform particulate 
distributions that have been observed in these applications. 
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V 

FIGURE 1. Schematic of the flow geometry. Shown is the constant shear mean velocity profile U(y) ,  
the orientation of the coordinate axes x and y and the superimposed wavelike disturbance of 
infinitesimal amplitude and wave vector k.  

However, coherent granular features have been observed in flow simulations free of 
fluid effects (Hopkins & Louge 1991), and their appearance may be attributed to a 
selection principle based on the stability of organized structures. Until the work of 
Savage (1 992) which makes effective use of symbolic manipulation, little attention had 
been paid to the stability issues of granular flows. Savage (1992) used equations of 
motion derived by Lun et al. (1984) from kinetic theory and analysed the stability of 
the linearized system using eigenvalue techniques. The same approach was used by 
BabiC (1992, 1993) to demonstrate that if a granular system is sufficiently small, it will 
always be stable as the unstable low wavenumber cannot exist. A similar approach has 
been used by many in the context of two-fluid models to study the formation and 
propagation of concentration inhomogeneities (Anderson & Jackson 1968 ; Hill 
& Bedford 1979; Jackson 1985; Prosperetti & Jones 1987; Batchelor 1988; Homsy, 
El-Kaissy & Didwania 1980; Foscolo & Gibilaro 1987). More recently McNamara 
(1993) has considered the stability of granular systems in the dense limit using equations 
due to Haff (1983). This work describes the sound and heat conduction modes as does 
the work of Mello, Diamond & Levine (1991) with a lesser constraint on solid fraction. 

Inertially dominated granular flows as well as non-zero Reynolds number 
fluidization are inherently nonlinear. If initial perturbations grow sufficiently large, 
nonlinear effects will become important. To predict the onset of such finite-amplitude 
effects, it is essential to investigate the transient character of the linear problem, and 
the eigenvalue approach cannot provide this insight for the case of a non-normal linear 
evolution operator. In the context of viscous Newtonian flows, it has been shown 
(Butler & Farrell 1992; Reddy, Schmid & Henningson 1993; Reddy & Henningson 
1993; Trefethen et al. 1993; Farrell & Ioannou 1993) that the linear evolution operator 
supports solutions that will transiently amplify the initial perturbation energy by 
orders of magnitude although all of the eigenvalues are confined to the stable half- 
plane. 

The present paper addresses the linear stability of pure shear flows of dry particles 
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that interact by colliding nearly elastically against one another to determine whether 
transient effects may lead to sufficient growth that may then render the linear system 
invalid. The analysis is based on the linearized equations due to Lun et al. (1984) for 
the evolution of infinitesimal perturbations. Our stability analysis will follow a 
different route that will enable us to capture transient as well as long-time phenomena. 
The analysis will rest upon the norm of the matrix exponential or the fundamental 
matrix rather than on eigenvalues, and its relation to eigenvalue-based stability 
analysis will be established and critically assessed. 

2. Governing equations 
We will investigate the flow of a mixture consisting of rigid smooth particles 

embedded in an incompressible and inviscid fluid of infinite extent. A linear velocity 
profile is assumed, 

where Tis the (constant) shear rate and e, is the unit vector in the streamwise direction. 
For a sketch of the flow geometry see figure 1. 

The governing equations for the conservation of mass, momentum and energy are 
written as follows: 

UY) = o%i 

dv 
- = -vvu, 
dt 

du 
dt 

v- = vg-vp, 

3 d T  zv- = -p:vu-vq-y, 
dt 

where v denotes the solid fraction, u is the bulk velocity, p is the stress tensor, g is the 
acceleration due to gravity and T denotes the granular temperature; q stands for the 
flux of fluctuation energy and y is the collisional rate of energy dissipation per unit 
volume. 

The equations above have been non-dimensionalized by the diameter of the solid 
particles and the shear rate r. We will restrict ourselves to the case of two-dimensional 
disturbances. To close the above equations we make use of the constitutive equations 
derived by Lun et al. (1984) and further simplify them by keeping only first-order terms 
in the small parameter (1 -e) where e denotes the coefficient of restitution, thereby 
restricting our attention to systems that exhibit nearly elastic collisions. After 
linearizing about a steady state (which we will denote with the subscript 0) we arrive 
at the evolution equations for the disturbance quantities. 

Next, we express the perturbation quantities (denoted by a prime) in the form 

with 

Notice that the streamwise and normal wavenumber, k, and k ,  respectively, have 
been assumed to vary in time. Following Phillips (1969), we will consider a simple 
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model that will mimic the interaction of the disturbances with the mean flow. This 
model has the form of Fourier modes in which the wavenumber vector k is turned by 
the mean shear flow. 

k(4 = [k,(O), k,(O) - tk,(O)l. 

Whereas the x-component of k remains constant, the y-component will vary linearly 
in time leading to phase lines nearly parallel to the x-axis as time progresses. Figure 2 
shows a sketch of the wavelike structures for both positive and negative normal 
wavenumber k,. 

Substituting the above assumptions and simplifications into the governing equations 
leads to the equations governing the evolution of the wave amplitudes of an 
infinitesimal perturbation about a steady mean state 

with 

dfi 
- = - ivo(k, zi + k, a), 
dt 

4 = v(l +4vg0), 
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FIGURE 2. Sketch of wavelike pattern for (a) both the streamwise and normal wavenumber 
positive, (b) the streamwise wavenumber positive, the normal wavenumber negative. 

These equations are taken from Savage (1992) and have been reproduced for 
completeness. For a derivation of these equations the reader is referred to the original 
reference. 

The above equations constitute a system of differential equations with variable 
coefficients and read 

d 
- q = A ( t ) q  with q=(Cz26f)3' 
dt 

For the model of shear-induced wave vector turning proposed above, A ( t )  is 
quadratic in time and can be written as 

A(t) = A, +Al t +A, t2 

with time-constant matrices A,,A, and A,. 

3. Stability analysis 
In this section we will focus on two different cases of equation (1). The case of time- 

independent wave vectors will be treated first and a stability calculus based on the 
norm of the matrix exponential will be introduced to probe the stability characteristics 
of the flow variables. The derived tools will then be extended to the case of time- 
dependent wavenumbers where the special case of shear-induced wave vector turning 
will be considered. Both cases will lead to similar stability criteria, although the 
mathematical structure will be markedly different. 

3.1. Constant wave vector case A ( t )  = A, 
The formal solution of the governing equation (1) for constant A can be expressed in 
the form 

q = exp (tA) qo = S exp ( tA)  S-lq,, 

where A stands for the diagonal matrix with the eigenvalues of A along its diagonal and 
S denotes the matrix whose columns are composed of the normalized eigenvectors 
of A. 

A widespread method in linear stability analysis is to concentrate on exp (tA),  i.e. the 
spectrum of A in order to analyse the behaviour of q. This is only justified when the 
matrix A is of normal type because only in this case do the eigenvectors form an 
orthogonal set that results in a unitary S. If the matrix A is non-normal (as in our case), 
basing stability solely on exp(tA) can be misleading, as owing to the similarity 
transform based on a non-unitary matrix S, transient phenomena may occur which are 
not captured by the spectrum alone. 
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FIGURE 3. Asymptotic growth rate n, versus normal wavenumber k,. The curves labelled with 1 , 2  and 
3 correspond to a streamwise wavenumber k, = 0.1, 0.2, 0.3, respectively. (a) vo = 0.3, (b) vo = 0.4. 
For both figures, the coefficient of restitution has been chosen as e = 0.8. 

A more adequate and rigorous measure for stability is the norm of the matrix 
exponential IIexp (tA) 11 which describes the largest possible amplification of initial unit 
norm disturbances at a given time, 

For the sake of simplicity, we will consider growth in the 2-norm (Euclidean norm), 
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although a physically more relevant weighted norm can be introduced. The square for 
the 2-norm for vectors is given as the sum of squares of the individual vector 
components. The 2-norm for matrices is deduced from the vector norm in the standard 
way and is most easily computed with the help of the singular value decomposition. 

We will first focus our attention on the linear stability in the asymptotic limit of large 
time which is accurately described by the spectrum. This can be seen by bounding the 
norm of the matrix exponential in the following way. 

e x p ( 4  G llexp(tA)II = IISexp(t4S-lII d llS-lll IlSll e x p ( 4 ,  

where (T stands for the real part of the least stable eigenvalue. For normal matrices, 
I I S ' I I  llSll = 1 and the lower and upper bound on the matrix exponential norm 
coincide. Therefore, the behaviour of IIexp (tA)lI for normal A is governed by the real 
part (T of the least stable eigenvalue for all times. If IIS-ll( $ 1, i.e. in the case of 
a non-normal matrix, only the asymptotic behaviour for large times is described by the 
least stable eigenvalue. Therefore, investigating the spectrum of a non-normal matrix 
is equivalent to analysing the t + 00 behaviour of solutions to the associated initial- 
value problem. 

In the next paragraph we will investigate the long term behaviour of our governing 
equations which have been found to yield a matrix A of non-normal type. 

In figure 3 we plot the growth rate (i.e. the real part of the least stable eigenvalue) 
as a function of the normal wavenumber k,. 

It is interesting to note that for low positive as well as negative normal wavenumbers 
the curve for the growth rate shows a cusp. This cusp stems from a switching of 
eigenvalues of the stability matrix A and is associated with a pronounced change in the 
structure of the least stable eigenmode. To illustrate this further, we plotted the 
location of the four eigenvalues of system (1) in the complex plane as the normal 
wavenumber was varied (figure 4a). For negative k, (denoted by A in figure 4a) the 
eigenvalue of branch I11 constitutes the least stable mode. By increasing the normal 
wavenumber, the eigenvalues of branch I and I1 will move towards the unstable half- 
plane taking over the role of the least stable mode (B). By further increasing k, the 
eigenvalues of branch I and I1 tend towards higher damping rates (C and 0) and the 
least stable eigenvalue is associated with branch 111. Regarding the least stable mode, 
the eigenvalue of branch IV does not come into play for this particular choice of 
parameters. This switching of the eigenvalues results in the cusps in figure 3. Associated 
with that exchange is also a discontinuous change in the structure of the dominant 
eigenvector. This is displayed in figure 4(b) where the modulus of each eigenvector 
component has been plotted versus the normal wavenumber k, for small and positive 
values of k,. Besides the jump at the crossing wavenumber (kJC = 0.043 we also 
observe the dominance of velocity components in the structure of the least stable 
eigenvectors. 

In figure 5 we computed the asymptotic growth rate for infinitesimal disturbances in 
the (kz, k,)-plane where the linearly unstable region has been shaded. For wavenumbers 
of physical interest, we observe an extended region of linear instability in the positive 
k,-plane and the maximum growth rate is associated with perturbations of the type 
shown in figure 2(a) that form an angle slightly greater than 45" with respect to the 
streamlines. Only for larger values of k,  and small to moderate normal wavenumbers, 
is linear stability for t --f co encountered although there is a small lobe of instability for 
perturbation wave vectors approximately perpendicular to the least stable ones in the 
upper plane. This lobe corresponds to perturbations depicted in figure 2(b). 

It should be stressed again that the eigenvalue-based stability results are only valid 
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FIGURE 4. Eigenvalue trace and eigenvector structure. In (a) the four eigenvalues have been traced in 
the complex plane as the normal wavenumber k,  has been increased from k, = -0.4 (marked with 
the letter A )  to k,  = 0.4 (marked with the letter D). In (b) the absolute value of each eigenvector 
component associated with the least stable eigenvalue is displayed as a function of k,. Owing to the 
eigenvalue switching, a discontinuity is observed at a normal wavenumber of k,  z 0.043. For both 
plots a streamwise wavenumber of k,  = 0.1, a mean solid fraction of v,, = 0.3 and a coefficient of 
restitution of e = 0.8 have been used. 

for the asymptotic limit of large time, but do not allow any conclusions about the 
overall stability of the flow. 

We now will focus on the norm of the matrix exponential that will give more insight 
into the short time stability character of the flow. To this end, we plot the norm of the 
matrix exponential as a function of time. As can be seen in figure 6, there is a 
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FIGURE 5. Contours of the real part of the least stable eigenvalue. (a) for a solid fraction of vo = 0.3; 
(b) for a solid fraction of vo = 0.4. In both cases the coefficient of restitution is e = 0.8. The shaded 
region represents unstable (kz, kJ-combinations. 

pronounced transient growth period even for the asymptotically decaying flow 
configuration. For the chosen parameter combination an amplification of the initial 
energy by a factor of 5.9 is possible before the decay predicted by the (damped) 
spectrum sets in. This transient growth phase is also present for an asymptotically 
unstable flow and might provide sufficiently large amplitudes at a much shorter 
timescale than exponential instabilities will do for finite-amplitude effects to set in. 

It is worth emphasizing that the curves depicted in figure 6 represent the envelope of 
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FIGURE 6. Temporal evolution of the norm of the matrix exponential. (a) k,  = 0.4, vo = 0.3, e = 0.8, 
k,  = 0.1. The asymptotic growth rate has been found to be n, = -0.2795. (b) k, = 0.4, vo = 0.3, 
e = 0.8, k,  = 0.25. For this configuration the asymptotic growth rate is n, = +0.0625. 

all possible realizations based on initial conditions with the unit 2-norm which is 
reflected in the definition of G(t) given above. All individual realizations by definition 
fall below it or at best meet this curve tangentially. Given a tangent point on this 
envelope, the associated initial condition and subsequent evolution is given as the right 
and left singular vector of exp ( to l l ) ,  respectively, where to is the time corresponding to 
the tangent point. 

It is important to realize that the transient amplification of the 2-norm of initial 
perturbations is a non-modal phenomenon which can be seen by computing the 
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FIGURE 7. Contours of initial transient growth rate in the (kz,  k,)-plane. (a) for a solid fraction of 
v,, = 0.3; (b) for a solid fraction of v,, = 0.4. In both cases the coefficient of restitution is e = 0.8. 

to = 1.36 to = 25 eigenvector 

G 0.0731 -0.0955 -0.0955 
ili 0.8951 0.0134 0.0218 
i t  -0.2546 -0.9785 -0.9776 
T -0.3586 -0.1823 -0.1864 

TABLE 1. Structure of optimal perturbations tangent to the curve in figure 6(a) at selected times. 
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FIGURE 8. Contours of the maximum possible amplification factor in the (kz, k,)-plane. The shaded 
region corresponds to the asymptotically unstable region where infinite amplitudes are possible owing 
to exponential growtt. The mean solid fraction has been set to vo = 0.3 for (a) and to vo = 0.4 for (b), 
the coefficient of restitution is e = 0.8. 

components of the disturbances that will constitute the maximum growth curves (figure 
6) for selected times. The results, obtained by the singular value decomposition, are 
listed in table 1. 

The structure of the disturbance that will reach the maximum possible transient 
amplification at t = 1.36 differs considerably from the disturbance at time t = 25 which 
itself is close to the eigenvector associated with the least stable eigenvalue (see last 
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column of table 1). Whereas the disturbance at t = 1.36 consists mostly of a zi-wave, 
it is a normal velocity mode that will persist in the limit of large time. This shows that 
the transient effects observed in figure 6 are inherently non-modal. 

Figure 7 displays the initial transient growth rate w defined as 

as a function of streamwise and normal wavenumber. Considerable growth rates are 
observed throughout the (k,, kJ-plane and among the perturbations with fixed wave 
vector modulus, disturbances with a 45" structure will experience the least initial 
growth. This initial behaviour markedly differs from the asymptotic result in figure 5 
which shows the greatest growth rates just off the 45" line. Furthermore, this result 
appears to be independent of the mean solid fraction. 

Finally, we probe the maximum possible amplification, 

G,,, = SUP 
t > O  

as a function of the two wavenumbers. Again, the shaded region is the domain of 
asymptotic instability where infinite amplifications can be achieved owing to an 
exponential process. Outside this region transient growth is possible and the maximum 
amplification is given by the corresponding contour levels in figure 8. 

3.2. Turning wave vector case A(t) = A, +A, t +A, t2 

A similar analysis than the one presented in the previous section is developed to allow 
us to capture transient effects for the variable coefficient case. However, owing to the 
time dependence of A, the equivalent analysis is more involved and makes use of the 
theory of differential equations for linear operators. For the present case of granular 
shear flow stability, we are limited to a finite-dimensional linear operator and in what 
follows we will restrict ourselves to the 4 x 4 matrix case, although the theory presented 
is valid for a wider class of linear operators. 

It can be shown (e.g. Bellman 1960) that any solution of 

can be written as q = Xq, where X is known as the normalized integral matrix or the 
fundamental matrix and satisfies the matrix differential equation 

d 
dt 
-X = AX, X(0) = /, X,/EW~" 

where / denotes the identity matrix. 

approximation. 

next approximation is given by 

This matrix differential equation can be solved by the method of successive 

Let X(O) = /and X(')(t) denote the fundamental matrix after the ith iteration; then the 

X(i+l)(t) = /+ rA(7)X(0(~) d7, (2) 
where the fact that 

has been used. The integral of the matrices is taken component-wise. 
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FIGURE 9. Temporal evolution of the norm of the fundamental matrix for the variable coefficient case 
(i.e. shear-induced wave vector turning). (a) k,(O) = 0.4, vo = 0.3, e = 0.8, k,(O) = 0.1. (b) k,(O) = 0.4, 
vo = 0.3, e = 0.8, k,(O) = 0.25. The dotted line in both figures is the temporal evolution of the matrix 
exponential norm for the constant coefficient case with otherwise identical parameter setting and is 
given for comparison. 

The approximations X( i ) ( t )  can be written explicitly in form of nested integrals of the 
coefficient matrix A(t) as 

X(0) = /, 

itimes 
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FIGURE 10. Contours of the maximum possible amplification factor in the (k%, kS-plane for the 
variable coefficient case (i.e. shear-induced wave vector turning). The mean solid fraction has been set 
to Y,, = 0.3 for (a) and vo = 0.2 for (b), the coefficient of restitution is e = 0.8. 

The fundamental matrix X(t)  is then given as 

X(t )  = lim P ( t ) .  
b m  

Other solutions to the matrix differential equation for X(t) are known, one of them 
leading to an exponential form similar to the constant coefficient case (Magnus 1954). 
The solution by multiplicative integrals is also an alternative to the recurrence 
technique given above. For further details the reader is referred to Gantmacher (1 989). 
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FIGURE 11 (a-d). For caption see facing page. 

It should be noted that for the case of a constant coefficient matrix A, the algorithm 
above will result in the matrix exponential X(t )  = exp ( tA) .  

For numerical purposes, the evaluation of the integrals by Romberg’s method has 
been found to be sufficient. The number of iterations appeared to be dependent on the 
governing parameters and the convergence of the results required particular care. 

The recurrence relation (2) is absolutely and uniformly convergent in the interval 
[0, TI, and an outline of the proof is given in Gantmacher (1989). 

Applying the above to our problem, we are now able to cast the stability equations 
for turning wave vectors into an analogous form as for the constant wave vector case, 
i.e. 

In this case, the 2-norm of the fundamental matrix is the proper measure to decide 
on stability or instability of the fluid system. 
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FIGURE 11. Visualization of the solid fraction perturbation for (a) t = 1, (b) t = 1.4, (c) t = 1.5, ( d )  
t = 2, (e)  t = 2.5 and (f) t = 3. The chosen parameters are k,(O) = 0.4, k,(O) = 0.1, vo = 0.3, e = 0.8. 
A decrease in the density of points in the scatter plot reflects a decrease in solid fraction while an 
increase in the density reflects an increase in the solid fraction. The initial perturbation is in the 
normal velocity 5 alone, hence the homogeneous appearance of the concentration distribution at early 
times. 

In figure 9 IlX(t)II is plotted as a function of time and as in the case of constant 
wavenumbers, transient growth is observed. Another interesting feature arises from the 
asymptotic analysis. It shows that for large times and k,(O) + 0, the different 
components of the disturbance vector (C ii B f ) T  decouple and behave like 

ii N exp (- C, t3) ,  
6 - exp (- C, t3), 
f w  exp(-c,t3), 

where 

2 c, = -KO k;(O) > 0, 
9v0 

thus showing absolute stability of 0,B and f. The behaviour of C for large time is 
characterized by asymptotic decay, as can easily be seen from the governing equations 
given in 92. 

Therefore, in the case of shear induced wave vector turning the disturbances show 
no asymptotic instability for all physically meaningful parameter combinations, and 
instabilities for this case are only possible through the transient mechanism. 

Transient effects might trigger high-amplitude phenomena (i.e. nonlinearities) and 
the asymptotic (stable) limit for large times may never be observed in an experimental 
setting. 

The dotted line in the plots represents the solution of the constant wavenumber case 
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based on the same parameters. It has been added to show the different behaviour of 
the two systems. The initial growth rate for the variable coefficient case coincides for 
obvious reasons with the one for the constant matrix A (figure 7). This is also reflected 
in the identical initial slope of the solid and dotted line in figure 9 for t = 0. The turning 
wave case appears to result in larger amplification of the 2-norm than the equivalent 
non-turning case and the time of occurrence of the transient peak does not coincide 
with its equivalent in the non-turning case. 

The dependence of the maximum amplification for a range of streamwise and 
normal wavenumbers is displayed in figure 10 for a combination of selected parameter 
values. This figure shows that the largest linear growth occurs for very small values of 
k,(O) and at about k,(O) z 0.3. Such perturbations result in the largest subsequent 
amplification of the 2-norm of the perturbation vector, and as the wavenumber vector 
turns during growth, the appearance of the instability strongly depends on the time at 
which it reaches a maximum. Since we only consider the 2-norm, no conclusions can 
be drawn on the nature of the perturbation or which flow variable is most amplified. 

To illustrate the transient growth and asymptotic decay process in the case of a 
wavelike perturbation that is allowed to turn with the imposed constant shear, we 
computed the evolution of the perturbation in solid fraction for selected times starting 
with an initial disturbance that consists of a pure normal velocity (6) perturbation of 
unit 2-norm. The initial-value problem was solved numerically using a fourth-order 
Runge-Kutta scheme. The minimum solid fraction encountered within the time 
interval of integration was subtracted from the calculated solid fraction and the result 
was normalized by its maximum peak to peak value. This was then used as a 
probability density function to visualize the formation and decay of coherent patterns. 
The results are displayed in figure 11. At time t = 0 no initial perturbation in solid 
fraction is imposed. As time evolves, a distinct structure appears that subsequently 
turns ' into the shear'. At later times, this structure experiences considerable stretching 
which ultimately results in a completely homogeneous mixture. Although the analysis 
predicts asymptotic decay of perturbations for all physical parameter combinations, it 
is conceivable that during the process displayed in figure 11 finite-amplitude effects 
may be triggered that will yield permanent microstructures as observed in the 
simulations of Hopkins & Louge (1991). This particular realization is for a prescribed 
wavenumber initial condition. Owing to the discrete nature of real systems, their 
transient behaviour is governed by the evolution of broadband noise as an initial 
condition. This can be simulated by the superposition of the full range of physical 
wavenumbers in the (kz,  k,)-plane. 

4. Summary and conclusions 
This study builds upon the current understanding of linear stability of granular shear 

flows, using the continuum governing equations first presented by Lun et al. (1984). In 
the context of inertially dominated particulate flows, Savage (1992) gave a presentation 
of the asymptotic stability of these systems which was also used by BabiC (1992, 1993). 
Here, we discuss the transient stability of stationary harmonic perturbations as well as 
harmonic perturbations that turn with the imposed shear, and revisit asymptotic 
stability with new findings. 

4.1. Asymptotic stability 
The constant wavenumber case revealed two modes of asymptotic instability, that 
favour the most rapid growth of perturbations with approximately perpendicular 
wavenumber vectors. Savage (1992) fully documented the stability of structures in the 
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upper right-hand quadrant of the (kz,  k,)-plane, but neglected to document the nature 
of the lower right-hand quadrant. The regions of instability appear as lobes in the 
(kz, k,)-plane. These are separated by a discontinuous slope in the growth constant of 
the least stable mode. In figure 5 ,  this is evident from the cusp in the contour map of 
the growth constant and reflects a switch in the eigenvector of the most unstable mode. 
With a broadband initial perturbation, the combination of the maxima in growth rate 
of the two lobes of instability can be expected to asymptotically yield the dominant 
structures, within the limitations of linear theory. These structures are made up of two 
sinusoids of near perpendicular wavenumber vectors (for the cases studied, the angle 
between the wavenumber vectors was 89.7'). Figure 4 shows that the eigenvectors 
associated with the two modes both have non-zero components of all four flow 
variables. Therefore, both lobes will influence the particle distribution, and the two 
modes will constructively and destructively interfere with one another to create 
geometrically arranged visible ellipsoidal ' structures ' nested in near rectangular 
parallelograms. The aspect ratio of these ellipses is approximately the ratio of the 
magnitude of the wavenumber vectors associated with the lobe maxima, and their 
length is the reciprocal of the magnitude of the lower lobe wavenumber vector. The 
orientation of the major axis is derived from the orientation of the upper lobe 
wavenumber vector, as had been shown by Savage (1992), and it 'opposes' the shearing 
motion. BabiC (1992, 1993) identified the two lobes of asymptotic instability in the 
(itz, k,)-plane, but did not associate them with the formation of coherent structures. 

For example, at a solid fraction of v,, = 0.4, and e = 0.8, the aspect ratio of the 
linearly unstable structures is approximately 3.8. In general, the angle of the major axis 
of these structures relative to the streamline is not 45' as may have been suggested by 
others, for this example it is 50.7', and they are approximately 26 particle diameters 
long. 

The turning wavenumber case is found to be asymptotically stable for all 
wavenumbers and all orientations of the initial perturbation. 

4.2. Transient stability 
One of the main points made in this paper is the distinction between asymptotic and 
transient instability for non-normal systems. Whereas the former is governed by the 
spectrum of the linear evolution operator, the latter requires more sophisticated tools 
to capture the short-time characteristics of the flow. A correct measure of the 
(in)stability is given by the norm of the solution operator. 

For both cases of constant and time-varying wavenumber vector, a period of 
significant transient growth has been observed followed by behaviour that is dictated 
by the spectrum of the linearized operator. The maximum possible amplification of the 
2-norm of the initial condition is larger for wavelike disturbances that exhibit time- 
dependent alignment with the imposed main shear field than for perturbations that do 
not change their spatial structures as time progresses. The perturbations that lead to 
the greatest amplification were found to be nearly aligned with the flow. Owing to the 
asymptotic stability of the turning wave vector scenario, large growth and development 
of finite-amplitude effects can only be achieved with the help of the transient instability 
mechanism shown in this presentation. 

Owing to the discrete nature of most granular flows, which can often be described 
as occupying a volume that is not significantly larger than the volume of an individual 
particle, thereby violating the requirements of a continuum, broadband noise in all 
flow variables is inherently present. This will continually feed the transient growth 
process illustrated in figure 11, and will result in persistent visible microstructure whose 
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major axis is ‘aligned’ with the shear (south-west to north-east in the figure), as was 
observed by Hopkins & Louge (1991). As the transient growth process is found to be 
stronger in the turning wave case, this mechanism is believed to dominate over the 
asymptotic fixed wavenumber instability for a range of conditions ; specifically those 
where the fixed wavenumber asymptotic growth is sufficiently small. Indeed, the 
asymptotic microstructure predicted by Savage (1992) and BabiC (1992, 1993) 
‘opposes ’ the shear in contradiction with numerical observations and the continual 
transient growth mechanism owing to inherent broadband noise. 

Finally, while this mechanism may be the dominant source of coherent pattern 
formation, it may also provide a mechanism for triggering finite-amplitude effects. 

The authors gratefully acknowledge the generous support of Intevep, the Research 
and Technological Center of Petrole6s de Venezuela. 
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